
2007 DARPA Urban Challenge
The Ben Franklin Racing Team

Team B156 Technical Paper∗

University of Pennsylvania†

Lehigh University
Lockheed Martin Advanced Technology Laboratories

June 1, 2007

Executive summary

This paper describes the design, construction, and testing of an autonomous ground vehicle by the
Ben Franklin Racing Team for the DARPA Urban Challenge. After analyzing the performance
demands required of an autonomous vehicle traveling in an uncertain urban environment, we have
designed our sensing, planning, navigation, and actuation systems to meet these demands. We
have chosen an array of GPS/INS, LADAR’s, and stereo cameras to provide timely information
about the surrounding environment at the appropriate ranges. This sensor information is incorpo-
rated into a probabilistic dynamic map that can handle GPS dropouts and errors. Our planning
algorithms consist of a high-level mission planner that uses information from the provided RNDF
and MDF to select routes, while the lower level planner uses the latest dynamic map information
to optimize a feasible trajectory to the next waypoint. The vehicle is actuated by a cost-based con-
troller that efficiently handles steering, throttle, and braking maneuvers in both forward and reverse
directions. Our software modules are integrated within a hierarchical architecture that allows rapid
development and testing of the system performance. Quantitative evaluations show that our vehicle
and algorithms are able to meet the demanding requirements needed to successfully complete the
Urban Challenge.

∗DISCLAIMER: The information contained in this paper does not represent the official policies, either express or
implied, of the Defense Advanced Research Projects Agency (DARPA) or the Department of Defense. DARPA does
not guarantee the accuracy or reliability of the information in this paper.

†Corresponding author: Daniel D. Lee,ddlee@seas.upenn.edu

1 Introduction and overview

The goal of the 2007 DARPA Urban Challenge is to build an autonomous ground vehicle which
will execute a simulated military supply mission safely and effectively in a mock urban area.
Compared with previous DARPA Grand Challenges, this particular challenge necessitates that
robot vehicles perform autonomous maneuvers safely in traffic [1]. To address this challenge, the
Ben Franklin Racing Team was formed by students and faculty at the University of Pennsylvania,
Lehigh University, and engineers at Lockheed Martin Advanced Technology Laboratory. For the
past year, the Ben Franklin Racing Team has been busy preparing “Little Ben,” a drive-by-wire
Toyota Prius with an array of onboard sensors and computers shown in Figure 1. The follow-
ing sections details our team’s approach in designing, constructing, and testing our hardware and
software algorithms for the upcoming Urban Challenge.

Figure 1: Little Ben is a Toyota Prius hybrid vehicle modified for drive-by-wire operation with an
onboard array of sensors and computers.

1.1 Design considerations

The Urban Challenge presents unique challenges to autonomous sensing, navigation, and control.
Some of the scenarios that our vehicle will need to be able to handle include the following:

• Maintain appropriate safety margins at all times.

• Accurately follow a lane within prescribed lane boundaries.

• Detect and avoid moving traffic.

• Stop and drive into a new lane in the presence of other vehicles.

• Park in constrained spaces in dynamic environments.

2

These situations require that obstacles and lane markings are detected at a distance, and that the
vehicle reacts quickly and appropriately while following the local traffic laws and conventions. An
overarching requirement is that a successful system adhere to a stringent set of real-time processing
constraints in its detection and reaction to its environment. This is mainly reflected in the system
reaction time, as governed by the processing sample rate. Low sample rates increase the distance
at which obstacles and other traffic vehicles must be detected for safe operation. Conversely, high
sample rates are attainable only by using overly simplified sensing and control algorithms.

The design of our vehicle’s hardware and software systems is predicated on achieving a reaction
time that ensures safe operation of driving maneuvers at the mandated upper speed limit of 30 mph
(13.4 m/s). As an example of our design methodology, Figure 2 shows our calculation of the
required detection distance of another vehicle in order for our vehicle to properly react and stop at
various relative speeds up to 60 mph (26.8 m/s). In our calculations, we require that at least one
vehicle length of separation is maintained at the end of the maneuver. We have also identified the
maximum braking acceleration that can be introduced in this speed range without triggering the
anti-lock brake system (ABS). Therefore, the ABS reaction dynamics is reserved as an additional
safety margin when dry pavement conditions are not present.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Relative speed (m/s)

De
te

ct
io

n
di

st
an

ce
 (m

)

Figure 2: Required detection distance at various speeds taking into account worst-case latencies in
system processing time.

We have evaluated a range of possible system sample rates, and have selected 10 Hz as the
desired system processing rate. Our calculations in Figure 2 take into account a two sample period
delay (200 ms) as the worst case scenario for detection and reaction: the first sample period could
elapse just before an obstacle crosses the sensor detection threshold, and the second sample period
is assumed to be used for the necessary computational processing.

The hardware and software systems have been selected to meet the desired detection distance
and processing time objectives. Sensors and their respective mounting positions have been cho-
sen to maximize their long range detection characteristics. Drive-by-wire actuation and computer
hardware systems have been selected to minimize processing latencies. Similarly, our software
modules are also optimized to maximize detection distance and minimize processing delays. This

3

combination of hardware sensing systems with efficient, reactive software modules will allow our
vehicle to achieve the requisite safety margins for driving in urban traffic situations.

1.2 System architecture

After considering the various design requirements needed for autonomous traffic navigation and
control in urban environments, the following system components were selected and installed.

1.2.1 Hardware systems

As shown in Figure 3, the drive-by-wire vehicle conversion was performed by Electronic Mobility
Controls (EMC) of Baton Rouge, Louisiana. The steering system was modified with a high-speed
servomotor attached to the underside of the steering column. A second motor actuates the throttle
and brake pedal through a lever and cable pull. In addition, EMC provided a computer interface
to control most other driving systems including transmission shift actuation, parking brake, head-
lights, windshield wipers, turn signals, and horn. We have also installed a CAN bus interface to
the Toyota OBD-II connector to verify vehicle state information directly from vehicle’s electronic
control unit (ECU) computers.

(a) (b)

Figure 3: Hardware components located inside the vehicle: (a) EMC-provided drive-by-wire con-
trols and (b) Mac Mini computing cluster in the trunk.

Computational processing power is provided by a cluster of Mac Mini Core Duo computers
located in the trunk running Linux Ubuntu. The cluster consists of 4–8 Mac Mini’s interconnected
through a Gigabit ethernet switch. Serial connections to EMC’s microprocessors as well as our
other vehicle-interface microcontrollers are provided over the network via a Comtrol serial device
server. This allows the system to automatically switch required processes over to a redundant
computing node in the event of a computer failure.

Additionally, the computers are interfaced to an array of hardware LADAR and vision sensors
mounted in a custom exterior roof rack. These sensors and their placement have been optimized
for complete azimuthal and long range coverage and are described in more detail in a later section.

4

1.2.2 Software architecture

As depicted in Figure 4, the software architecture has been divided hierarchically into a series of
modules, connected via interprocess communication messages. At the lowest level is the driving
module which is responsible for interfacing to the vehicle controller hardware and verifying correct
operation of the steering, throttle, braking, and transmission. Also present at this low level is the
pose software module which integrates readings from the GPS and inertial navigation system to
provide the latest pose information at 100 Hz. These two hardware interface modules can be readily
replaced by a simulation module which allows us to rapidly test the software without requiring the
processes to be physically connected to the vehicle systems.

Simulator

Mission

MapPlan

PathFollow

EMC OxTS

LMS291

Bumblebee

Velodyne

ROUTE

PATH

TRAFFIC

DRIVE
POSE

SENSOR

SENSOR

SENSOR

RNDF MDF
Logger

Figure 4: Software architecture showing system modules and corresponding interprocess commu-
nication messages.

At the highest level, the Mission planning module reads the appropriate RNDF and MDF files
to determine the optimal sequencing of waypoints needed to complete the mission objectives. Next
are the sensor modules which gather data from all the LADAR’s and stereo cameras to provide
probabilistic real-time estimates of the terrain, road markings, and static and dynamic obstacles.
These modules consolidate the large amount of sensor data into a compact representation in the
vehicle’s local reference frame before sending this information onto the MapPlan process.

The MapPlan process is then responsible for integrating all the sensor information into a prob-
abilistic dynamic map, and computing the appropriate vehicle path to reach the next desired way-
point as determined by the high-level Mission planner. It also checks to ensure that this path avoids
all known obstacles, while obeying vehicle dynamic constraints as well as local traffic rules. The
PathFollow module takes the desired vehicle path from the MapPlan process and generates the
optimal steering, throttle, and braking commands needed by the low-level driving module.

All the processes communicate with each other via well-defined message formats sent through
the Spread messaging toolkit [2]. This open-source messaging system provides message reliability

5

in the presence of machine failures and process crashes, while maintaining low latencies across the
network. It also enables convenient logging of these messages with appropriate timestamps. These
logs allow us to rapidly identify and debug bad processes, as well as replay logged messages for
diagnostic purposes.

These modules are written using a combination of C++ and Matlab. We have implemented a
development environment that incorporates Subversion for source code tracking, Bugzilla for as-
signing tasks, and a Wiki for writing documentation. All the documentation is readably accessible
to the whole team with convenient search functionality to allow easy collaboration. During field
testing, local copies of the Bugzilla and source code repository are stored within the vehicle to
allow us to make offline changes that are merged with our central servers after testing. With these
tools, rapid prototyping and development can be accomplished by our team both in the laboratory
and in the field.

2 Analysis and design

A variety of hardware systems and software modules have been implemented on our vehicle to
handle the difficult sensing, navigation, and control environments of the Urban Challenge. In the
following, we detail how these systems were designed, and show our analysis of their expected
behavior.

2.1 Safety systems

Since safe operation is an all-inclusive requirement, we have taken major steps toward minimizing
the risk of injury or damage due to undesired behavior of the vehicle. The emergency stop system
has been designed to make human intervention safe, quick, and reliable. In order to achieve fail-
safe operation, redundancy has been incorporated on multiple levels using watchdog timers and
heartbeat monitors in Figure 5.

Figure 5: Block diagram depicting the emergency stop and safety systems incorporated into the
vehicle.

6

When the “pause” mode is activated, either by a human operator or when the radio-controlled
transmitter is out of range, the throttle commands from the computers are automatically overridden
and the brake is applied at near maximimum braking acceleration to ensure smooth stopping within
the allowed distance. In this mode, the computers are unable to drive the vehicle unless the “run”
command is explicitly given. After the “run” command is given, the audible and visual strobe
warning devices are activated, and control is returned to the computer systems after a five second
delay.

Our “disable” mode is an extension of the “pause” mode. In addition to braking the vehicle
and disabling computer control of the throttle, the E-stop processor verifies the vehicle speed is
zero on the Toyota CAN bus, sets the transmission topark, and all the Toyota Prius systems are
then powered down. In this state, the vehicle needs to be manually restarted in order to reactivate
autonomous control. The vehicle can easily be disabled via the dedicated remote control or the
manual E-stop buttons located on either side of the car.

2.2 Sensor rack

The sensors chosen to meet our sensing requirements include a variety of 2D and 3D LADAR’s as
well as stereo cameras. Meeting the performance demands of the Urban Challenge requires sensors
to detect obstacles from 5–50 meters around the vehicle (see Figure 2). In order to maximize the
detection range of our sensors, the sensor rack shown in Figure 6 was custom designed to allow
optimal viewing angles for as many of these sensors as possible. In particular, we designed the rack
to accomodate the Velodyne HD LADAR to give the omnidirectional sensor a fully unoccluded 360
degree azimuthal view. By mounting the Velodyne 8” above the rest of the sensor rack, we take
advantage of the full complement of elevation angles in the sensor to provide a sensing range from
4 to 60 meters around the vehicle.

(a) (b)

Figure 6: Rooftop sensor rack designed to provide optimal viewing angles.

The rack also incorporates a set of forward and rear facing SICK 2D LMS-291 LADAR sen-
sors. These sensors are tilted downward in order to intersect the ground at approximately 30 meters
ahead and behind the vehicle. In these positions, the SICK LADAR’s are just within their range
limitations and can provide for both ground plane extraction as well as obstacle detection. These
sensors are arranged so that they do not occlude the Velodyne’s field of view, and provide a com-
plementary stream of range data.

7

The rack contains the warning siren, strobe lights, and mounting points for the GPS antennas.
It also provides space for a weatherproof electronics enclosure. This contains and protects the
power distribution block and sensor connectors which are routed from inside the vehicle through
the sunroof. The construction materials for the rack were chosen so that all the sensor components
are rigidly mounted, yet the frame is light enough so that it can be easily mounted and removed
from the roof by two people.

2.3 Vision system

In addition to the LADAR systems, we have also incorporated a stereo vision system to detect lane
markings and obstacles. This is necessary because when driving in urban canyons without GPS
reception, lane markings may be the only exteroceptive signal indicating where the lane is located.
In these situations, vision may be the only sensor that can accurately register the vehicle with the
desired lane of travel.

Adoption of LADAR systems by nearly every competitor in the Urban Challenge raises the risk
of inter-vehicle crosstalk. There is uncertainty about how LADAR’s within close proximity in the
Urban Challenge will affect their performance. In constrast, the passive nature of camera systems
eliminates the potential for such data corruption. Unfortunately, vision system performance is
highly dependent upon good ambient light levels. To maximize robustness, we incorporated both
vision and LADAR based solutions for sensing to leverage the orthogonal failure modes of these
sensor systems.

We have integrated a Point Grey Bumblebee 2 high-resolution, color stereo camera for lane
segmentation and stop-line detection. This vision system can also serve as a secondary sensing
modality for vehicle and obstacle detection as illustrated in Figure 7. Lane boundary segmentation
is accomplished via adaptive thresholding on the image intensity values to account for variations
in illumination across the image. The resulting feature set is further refined using stereo disparity
estimates. By assuming that markings of interest are constrained to the ground plane, predicted
disparity measurements at each pixel location in the near-field can be used to eliminate features
inconsistent with the ground plane hypothesis [3].

(a) (b)

Figure 7: Vision system: (a) Bumblebee stereo vision head used to (b) track vehicles and lane
markings.

8

2.4 LADAR reflectivity analysis

Both the Velodyne and the SICK LMS-291 LADAR sensors output simultaneous range and re-
flectivity measurements with each scan. The latter can be interpreted similarly to image data,
and the 8-bit reflectivity resolution is equivalent to many grayscale cameras. Segmenting the lane
markings from the reflectivity data can then be accomplished through traditional signal process-
ing techniques. To demonstrate this, representative reflectivity measurements of darker and lighter
asphalt road surfaces with a yellow center line marking are shown at Figure 8. This preliminary
analysis shows that detecting the center line in either case is relatively straightforward, and can be
used to help guide the vehicle for lane following, merging, and passing scenarios.

(a) (b)

0 10 20 30 40 50 60

20

40

60

80

100

120

140

Re
fle

ct
ivi

ty

Exterior Track/Road

0 10 20 30 40 50 60

20

40

60

80

100

120

140

M
ea

n
Re

fle
ct

ivi
ty

 (1
x6

 k
er

ne
l)

Exterior Track/Road

0 10 20 30 40 50 60

20

40

60

80

100

120

140

Re
fle

ct
ivi

ty

Interior Track/Road

0 10 20 30 40 50 60

20

40

60

80

100

120

140

M
ea

n
Re

fle
ct

ivi
ty

 (1
x6

 k
er

ne
l)

Interior Track/Road

Figure 8: Representative reflectivity measurements from a SICK LMS291 on (a) dark colored and
(b) lighter colored asphalt roads. The peak in both plots correspond to a yellow center line marking.

2.5 Pose estimation

Ben’s primary pose estimation system is an Oxford Technical Solutions RT-3050 unit. The RT-
3050 is a self-contained unit which uses a Kalman filter based algorithm to combine inertial sen-
sors, Global Positioning System (GPS) updates with differential corrections from the OmniStar
VBS service and vehicle odometry information from the native embedded vehicle systems [4].
The RT-3050 is able to provide pose estimates at a high update rate of 100 Hz with a stated accu-
racy of 0.5 meter. The unit is specifically designed for ground vehicle testing applications and is
capable of providing estimates during periods of sustained GPS outages or poor GPS performance
due to environmental effects such as multipath reflections.

The RT-3050 meets the performance requirements for operating in an urban environment; how-
ever, since pose estimation is so crucial for urban mapping and navigation, we have also con-
structed a redundant secondary particle-filter based pose estimation system [5]. Our secondary
system consists of a Xsens MEMS IMU and a Navcom 2050 GPS unit with differential corrections
provided by the Starfire service, neither of which are used by the primary RT-3050 unit. This level
of redundancy is designed to provide increased fault tolerance in the unlikely event that the primary
system should fail.

9

2.6 Mapping

Our previous experience with autonomous outdoor navigation has underscored the need for robust
mapping that is consistent with perceptual data as well as prior information about the environment.
We address this issue by modeling uncertainty with factored Bayesian models and performing
inference on these models using multiple complementary techniques [6].

For the Urban Challenge, prior information about the local environment is provided by the
RNDF which gives the location of road features. We need to accurately reconcile this prior infor-
mation with current perceptual data as measured by our LADAR and vision sensors, to accurately
handle situations such as in merging and parking where tight navigation is a necessity. This in-
formation can be systematically integrated and registered by performing inference on factored
Bayesian models as follows.

As the vehicle traverses its environment, perceptual data are distilled into local occupancy grid
maps [7]. These maps are referenced to the local coordinate system of the vehicle and reflect the
state of the world as observed at a specific instant in time. Given corresponding pose estimates,
the local maps are fused over time to create a global map. If the pose estimation and mapping
process are performed independently, issues with consistency often arise, as illustrated in the left
two subfigures of Figure 9. This is often due to the nature of GPS error, which tends to exhibit
more low-frequency drift as opposed to high-frequency noise. This drift causes obstacles to smear
over long time scales, which becomes an issue when revisiting areas that have previously been
mapped, or when the vehicle lingers in an area for a time on the order of the drift timescale.

Original map

No
rth

in
g

(m
et

er
s)

Easting (meters)
!50 0 50

!30

!20

!10

0

10

20

30

40

Map without bias estimation

No
rth

in
g

(m
et

er
s)

Easting (meters)
!50 0 50

!30

!20

!10

0

10

20

30

40

Map with bias estimation

No
rth

in
g

(m
et

er
s)

Easting (meters)
!50 0 50

!30

!20

!10

0

10

20

30

40

Figure 9: Comparison of original map with those generated on a second traversal of the same
course, with and without bias estimation and correction.

We address this issue by modeling the pose output used for mapping as being corrupted by
a hidden additive bias. Given the corrupted pose estimate and observations of maps over time,
we can deduce the bias over time by assuming that multiple observations of the same area should
appear consistent. Probabilistically, we model this as a discrete-state hidden Markov model in
which we attempt to estimate the bias from map observations.

Given that we want to consider a discrete set of possible biases at the current time (bt), we can
apply Bayes’ rule to obtain a recursive filter that updates our prior belief about the bias (p(bt|zt−1))
given a measurement modelp(zt|bt) and a bias dynamics modelp(bt|bt−1), wherezt denotes the
measurement at timet, andzt denotes the sequence of measurements obtained up to timet.

10

p(bt|zt) = αp(zt|bt)
∑
bt−1

p(bt|bt−1)p(bt−1|zt−1) (1)

Our measurement model is provided by finding the cross-correlation of the local map with the
global map at certain shifts. This procedure results in a correlation score that we interpret as the
likelihood that the map was observed under each possible value of the GPS bias. This is illustrated
in Figure 10.

Figure 10: Illustration of map measurement model evaluation for GPS bias estimator.

Given this form of the measurement model, along with a simple diffusion dynamics model for
the GPS bias, all the major operations of the estimator can be implemented using convolutions,
which can be implemented very efficiently using our computer processors. Figure 9 demonstrates
the effect of estimating the bias with mapping. Without bias estimation, the map is notably smeared
after a second traversal of the same area. With bias estimation, no corruption is evident in the map
after the second traversal of the course.

Simulation results are shown in Figure 11. A known artificial bias was added to the true pose
for mapping, and this was then filtered via our method to estimate the bias. The results indicate
that the filter was able to track the true bias accurately throughout the length of the trial.

This technique can be employed to ensure consistency between the lane information in the
RNDF and what is perceived via the sensors. Without employing any sort of compensation, the
location of the lanes in the RNDF are likely to be significantly different from the location of the
lanes perceived by our vision and LADAR’s. Here the RNDF serves as a prior on the lane location.
We can merge this prior with an actual observation of the lane position arising from the vision
system in conjunction with the output of the pose system described above. By again applying a
discrete Markov filter, we can estimate the true global position of the lane, and will ensure that
we can construct an consistent, dynamic map. This will allow our vehicle to handle environments
where it needs to accurately sense driving lanes in the presence of traffic, such as with intersections
and merging scenarios.

11

0 100 200 300 400

−5

0

5

x coordinate

time

m
et

er
s

0 100 200 300 400

−5

0

5

y coordinate

time

m
et

er
s

Figure 11: Plots illustrating performance of secondary bias estimator in simulation. Dashed line
indicates magnitude of artificially injected bias and the crossed line indicates estimated bias. Left
and right figures showx andy components of the bias, respectively.

2.7 Planning

In our hierarchical software architecture, planning is performed in two stages. At the highest
level, the mission planner estimates travel times between waypoints and then computes the op-
timal sequence of waypoints to traverse in order to minimize the overall mission time. When a
particular lane or intersection is blocked, the mission planner recomputes an alternative sequence
of waypoints using Dijkstra’s algorithm to adaptively respond to traffic conditions [8]. Figure 12
illustrates the display from the mission planner as it monitors the progress of the vehicle through
the route network.

Figure 12: Mission planner uses information from the RNDF and MDF to plan optimal routes
through the traffic network.

The next stage of planning incorporates information from the dynamic map by computing a
detailed path to the next waypoint. This process is split across several specialized local planners
that individually handle specific Urban Challenge scenarios such as lane following, lane changing,

12

U-turns, and intersections.
As an example of one of our local planners, our lane following planner models the desired

vehicle path as a series of parametric cubic splines:

x(t) = a0 + a1t +
1

2
a2t

2 +
1

6
a3t

3 (2)

y(t) = b0 + b1t +
1

2
b2t

2 +
1

6
b3t

3. (3)

The parameters of this spline path are then optimized by minimizing the expected map cost
C(x, y) of the dynamic path, subject to the constraints that the path start and end at the corre-
sponding waypoints with the proper heading directions.

min
(ai,bi)

∫ t1

t0
C(x(t), y(t))dt. (4)

This computed path is then checked for possible collisions with static and dynamic obstacles before
it is sent to be executed by the path following module.

For the more difficult scenario where the vehicle may need to backup such as in a U-turn or
parking situation, we replace the parameterized spline path with a set of Dubins paths in the for-
ward and reverse directions [9]. Each of these paths are then scored using the path cost functional
in Equation 4, and the optimal path is then chosen and executed.

2.8 Path following

The path follower module is responsible for calculating the vehicle steering and throttle-brake ac-
tuation commands required to follow the desired trajectory as accurately as possible. The trajectory
specifies the desired route as a set of points for which the spatial position and the first and second
derivatives are defined.

Previous approaches to steering control for autonomous car-like vehicles have used PID con-
trol based methods with error terms that combine both the lateral and heading offsets from the
desired trajectory [10, 11, 12]. A weakness of these controllers in this application is that they do
not explicitly consider the kinematic constraints of the vehicle when calculating the steering com-
mand. These controllers also typically require significant reparameterization in order to operate
the vehicle in reverse.

In order to avoid these shortcomings, we have developed an alternative approach for steering
control which integrates the dynamics of a vehicle model (Figure 13) to predict the resulting change
in pose after a short period of time after a set of possible steering commands as shown in Figure 14
[13]. A cost function is then evaluated for each of the predicted poses and the steering command
which minimizes this cost function is chosen.

As illustrated in Figure 15, the particular form of the cost function used in our controller is as
follows:

C(φi) = E2
lateral +

[
Rθ sin(

Eθi

2
)
]2

(5)

13

Figure 13: “Bicycle” model of the car dynamics used for control.

Figure 14: Estimated future vehicle poses for a set of possible steering commands in a simulated
environment.

whereElateral andEθi
are the lateral and heading offsets of the vehicle relative to the target point

on the trajectory. Note that there is a length parameterRθ in the cost function which is used to
scale the heading error relative to the position error, which we can adaptively tune to maximize
performance in the different Urban Challenge scenarios.

The advantage of this value-based controller is that it is quite robust to vehicle dynamics, and
can be used just as effectively when the vehicle is operated in either reverse or forward. This allows
us to accurately control the vehicle in situations requiring tight navigation such as in lane changing
or parking.

3 Results and performance

In order to test the overall performance of Ben’s hardware and software systems, we have per-
formed an initial battery of performance measurements. These tests demonstrate some of the
fundamental capabilities of the vehicle that are necessary to perform the maneuvers required in the
Urban Challenge.

14

Figure 15: Graphical representation of the terms included in the controller cost function.

3.1 Stopping performance

We measured the vehicle stopping distance after “pause” mode had been activated as a function of
initial velocity. Figure 16 shows the results for a range of speed, demonstrating that at 20 mph (9
m/s), the stopping distance is about 8 meters, much less than the stated requirement of 20 meters.
The standard deviation of all the measurements over repeated trials was less than 1 meter in all the
tests.

Figure 16: Stopping distance as a function of initial vehicle speed.

3.2 Trajectory tracking

To measure the accuracy of our control algorithms for urban driving, a series of tests over two
laps of our test course at Lehigh University was performed and shown in Figure 17. Our test

15

course is approximately 900 meters long and was completed with an average speed of 10 mph,
with a maximum speed of 18 mph reached on the straight sections. The tracking performance of
the controller results in a mean lateral offset of -0.1 m, with a standard deviation of 0.3 m and a
mean heading error of 0.2 degrees with a standard deviation of 2.6 degrees. It can be seen that the
performance of the controller is highly repeatable, evident from the smooth and repetitive plot of
the steering angle.

!150 !100 !50 0
!20

0

20

40

60

80

100

120

Ea
st

in
g

(m
) (

re
la

tiv
e

to
 s

ta
rt)

Northing (m) (relative to start)

Desired Route
Actual Route

0 50 100 150 200
!20

0

20

Time (secs)

St
ee

rin
g

An
gl

e
(d

eg
)

0 50 100 150 200
!10

0

10

Time Elapsed (secs)

!
Er

ro
r (

de
gr

ee
s)

Mean:0.217 degrees, Standard Deviation:2.634 degrees

0 50 100 150 200

!1

0

1

Time Elapsed (secs)

La
te

ra
l E

rro
r (

m
)

Mean: !0.082m, Standard Deviation:0.296m

0 50 100 150 200

0

2

4

Time (secs)

C
os

t

 Mean:0.031, Standard Deviation:0.199

Figure 17: Results for the steering control component of the path following module during two
laps on a test course.

3.3 Vision performance

To assess the accuracy and reliability of our vision system for detecting lane features in urban
environments, 10 trials were conducted to assess the expected detection range of intersection stop
lines. In each trial, our vehicle was driven at a velocity of 15 mph towards the intersection of our
site visit course while the vision system attempted to detect the appropriate stop line. The trials
were conducted against each of the four stop lines, and under a range of illumination conditions
including significant shadows in the travel lanes. Data from the on-board pose system were also
recorded as ground truth for determining the relative vehicle position. A plot of the detection (true
positive) versus range is shown in Figure 18. These results indicate that we can expect reliable stop
line segmentation at ranges of 20 meters or more. It should be noted that system parameters (e.g.,
segmentation and voting thresholds) were chosen conservatively during these trials to avoid false
positives; none were observed during our testing.

16

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (meters)

De
te

ct
io

n
Ra

te

Stopline Detection Rate vs. Distance

Figure 18: Stop line detection rate versus intersection distance. Results indicate reliable detection
can be accomplished in excess of 20 meteres.

To characterize the performance of the stereo vision system for moving vehicle detection, we
conducted a series of 15 trials where a test vehicle was driven at a velocity of 15 mph towards
a stopped vehicle in the opposite lane. The test vehicle then attempted to detect the opposing
vehicle solely from stereo disparity measurements. Again, trials were conducted under varying
illumination conditions and an logged pose was used to estimate the detection range. A histogram
of the trial results is shown in Figure 19. The “initial” detection distance represents when the
opposing vehicle was first detected, while the “final” distance denotes when the vehicle was con-
tinuously tracked. The mean detection range for these was 15.4 and 14.6 meters, respectively.
These distances were limited by the narrow baseline of the camera system (12 cm). However, even
the minimum final detection range (8.0 meters) would be sufficient to meet the Urban Challenge
stopping criterion at 15 mph.

8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Detection Distance (meters)

Nu
m

be
r o

f I
ns

ta
nc

es

Stereo Vision Vehicle Detection
Initial detection
Final detection

Figure 19: Stereo vision for reliably detecting vehicles was demonstrated at mean distances of 15
meters.

17

3.4 LADAR visibility

To assess the performance of using LADAR reflectivity measurements in lane marking segmenta-
tion, a SICK LMS-291 was mounted parallel to the ground plane on our test vehicle roof rack at a
height of approximately 1.5 meters above ground level. The vehicle was then driven by a human
operator at a velocity of 15 mph over our site visit course. Separate trials were conducted to collect
data with the road center line in and out of the LADAR’s field of view to detect both false negatives
and false positives. The SICK scan rate was set at 70 Hz.

Of 11,631 scans with the road center line visible, there were 11,630 positive segmentations
(1 false negative). Of the 12,253 scans of asphalt with the center line not visible, no center lines
were detected (0 false positives). The success rate can be attributed to the significantly different
reflectivity characteristics of the asphalt and lane markings. This is clearly illustrated in the scan
histogram of the filtered reflectivity measurements in Figure 20.

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000
Goodman Campus, Lehigh University (05/23/07)

Nu
m

be
r o

f S
ca

ns

Max. Mean Reflectivity (each scan filtered w/ 1x6 kernel)

Centerline (11,631 scans)
Asphalt (12,253 scans)

Figure 20: Histogram of reflectivity measurements. After mean filtering, the distributions for
asphalt and the road center line can be readily segmented with a threshold of 85.

We expect the better range performance, greater angular resolution (0.09◦ vs. 0.50◦), and mul-
tiple scan lines (64 vs. 1) of the Velodyne system will offer similar performance over longer
distances. Characterizing the lane segmentation performance of the Velodyne system over a repre-
sentative cross-section of roads is currently being performed.

3.5 Intersection test

We measured the range and accuracy of our detection systems to meet the requirements to traverse
an urban intersection. Our tests consisted of two independent evaluations at 4-way stop intersec-
tions. The first was in a controlled environment where our vehicle pulled up to the stop line, saw a
car present, waited for the car to clear, and then proceeded through the intersection. This evalua-

18

tion performed well through several trials, but was limited to testing a single additional car driven
by a team member.

In our second evaluation, we took measurements with unpredictable drivers. This was per-
formed offline by collecting log data at a busy public intersection. Our vehicle was positioned
in an adjacent parking space and observed traffic passing through the intersection. In total, we
collected data in 15 instances with a single vehicle, 9 instances where two vehicles pulled up at
different entrances, and 2 instances with three vehicles. The vehicles included an assortment of
cars, trucks, and a bus. In simulation, we then tested to see whether our planning algorithm could
meet the timing requirements of the Urban Challenge for proceeding through an intersection. An
example of our assessment is shown in Figure 21, where the decision to proceed was made within
one second of the intersection being cleared.

Figure 21: Occupancy grid of an intersection at 0.5 by 0.5 meter resolution. Black cells represent
the ground plane while lighter cells show obstacles: Label A is the center of the intersection while
labels B,C,D,E are the lanes approaching the intersection. Label F represents the detection of a
passing car.

In one particular instance out of the 26 trials, our algorithm failed to correctly identify the
proper time to proceed. We are currently working to improve the algorithm to more robustly
handle these types of scenarios for the Urban Challenge.

4 Conclusions

This paper has presented an overview of the current state of the autonomous ground vehicle built
by the Ben Franklin Racing Team for the 2007 DARPA Urban Challenge. After quantifying the
sensing and reaction time performance requirements needed for the upcoming challenge, the hard-
ware and software systems for Ben were designed to meet these stringent criteria. An array of

19

GPS/INS, LADAR’s and vision sensors were chosen to provide both omnidirectional and long
range sensing information. The software modules were written to robustly integrate information
from the sensors, build an accurate map of the surrounding environment, and plan an optimal tra-
jectory through the traffic network. In particular, we have designed and implemented the following
systems in response to some of the unique performance requirements of the Urban Challenge:

• To meet the safety requirements, we have designed and implemented a fail-safe system with
manual and remote emergency stop capabilities.

• To accurately traverse lanes, we have implemented algorithms to sense lane markings, and
to properly integrate them into our maps.

• To sense moving obstacles, we have selected an array of long-range LADAR and vision
sensors and implemented fast, reactive processing routines to robustly detect the obstacles.

• To stop and drive in traffic consistent with local rules and conventions, we have developed
planning modules that can accomodate the various Urban Challenge scenarios.

• To address the challenge of parking, we have developed a controller that can accurately
navigate in forward and reverse modes.

Work is still ongoing to develop the complete set of systems needed to successfully complete
the Urban Challenge. However, our initial testing indicates that our current hardware and software
algorithms should be capable of handling the navigation and traffic scenarios that will be encoun-
tered in the Urban Challenge. We look forward to the opportunity to demonstrate our autonomous
vehicle during our site visit and at future tests.

20

References

[1] DARPA. (2007). Darpa Grand Challenge rules. Defense Advanced Research Projects Agency.
Retrieved from http://www.darpa.mil/grandchallenge/rules.asp

[2] Y. Amir, et al. (2004). The spread toolkit: architecture and performance. (Tech. Rep. CNDS-
2004-1). Baltimore, MD: Johns Hopkins University.

[3] S. Se and M. Brady. (2002). Ground plane estimation, error analysis, and applications.
Robotics and Autonomous Systems, 39, 59–71.

[4] R. E. Kalman and R. S. Bucy. (1961). New results in linear filtering and prediction theory.
Transactions of the ASME, 83, 95–107.

[5] P. Vernaza and D. D. Lee. (2006). Rao-Blackwellized particle filtering for 6-DOF estimation
of attitude and position via GPS and inertial sensors. In Proceedings of the IEEE International
Conference on Robotics and Automation.

[6] P. Vernaza and D. D. Lee. (2006). Robust GPS/INS-aided localization and mapping via
GPS bias estimation. In Proceedings of the 10th International Symposium on Experimen-
tal Robotics.

[7] A. Elfes. (1989). Using occupancy grids for mobile robot perception and navigation. IEEE
Computer Magazine, 22(6), 46–57.

[8] E. W. Dijkstra. (1959). A note on two problems in connexion with graphs. Numerische Math-
ematik, 1, 269–271.

[9] L. E. Dubins. (1957). On curves of minimum length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of Mathe-
matics, 79, 497–516.

[10] R. Coulter. (1992). Implementation of the pure pursuit path tracking algorithm. (Tech. Rep.
CMU-RI-TR-92-01). Pittsburgh, PA: Carnegie Mellon University.

[11] S. Thrun, et al. (2006). Stanley: The Robot that Won the DARPA Grand Challenge. Journal
of Field Robotics, 23(9), 661–692.

[12] R. Murray, et al. (2006). Alice: An Information-Rich Autonomous Vehicle for High-Speed
Desert Navigation. Journal of Field Robotics, 23(9), 777–810.

[13] T. D. Gillespie. (1992). Fundamentals of vehicle dynamics. Warrendale, PA, Society of Au-
tomotive Engineers.

21

